Common Formulas Used In Thermodynamics

 

1.)

  • Relation between different scales of temperature.

TC = Celsius Temperature

TF = Fahrenheit Temperature

TR = Rankine scale Temperature

TK = Kelvin scale Temperature        ( Div Sign below as under NR Pls note)

TC-0    =  TF-32   =   TR-0  =    TK-273.15

100           180             80                100

2.)  TC = 5/9  (TF-32)

3.)  TF = 9/5  TC+32

4.)  -40° C has same value on Celsius and Fahrenheit scale.

5.)   Triple point of water on Absolute scale of Temperature is 273.16K

6.)   There are 3 number of expansion   coefficients

– coefficient of linear expansion

– coefficient of superficial expansion

– coefficient of cubic expansion

(a) coefficient of linear expansion

α = l

l△T

new  length, l’ after thermal expansion is

l’ = l (1+α △T)

(b) coefficient of superficial expansion

β =    SG

S△T

 

S’ = S(1 + β△T)

(c) coefficient of cubic expansion

γ =  V

V△T

Similarly New Volume

V’ = V(1 + γ△T)

(d) Relation between   α, β, γ

6α = 3β = 2γ

or   α  =  β  =  γ

2      3

7.)   Heat supplied to a social mass m for increasing temperature △T is Q=m C △T(no face change)

8.)   Heat supplied to change its state at constant temperature

Q = mL

9.)   Gases posses infinite value of specific heat, But we consider only two specific heats Cp and Cv

Cp – specific heat at constant pressure

Cv – specific heat at constant volume

10.)  Mayer’s formula

Cp – Cv = R                    R = Gas constant

11.)  Degree of freedom of monoatomic and diatomic gas.

For monoatomic gas f= 3

(3 number of translational freedom)

For diatomic gas   f= 5

(3 number of translational and 2 number of rotational freedom)

12.)    For monoatomic gas    f= 3

Cv = 3/2 R

Cp = 5/2 R

γ = 5/3   (Cp/Cv) = 1.67

13.)   For diatomic gas   f = 5, at room temperature

Cv = 5/2 R

Cp = 7/2 R

γ = 7/S (Cp/Cv)= 1.4

14.)For Triatomic gas f= 6

Cv = 3R

Cp = 4R

γ = 4/3  (Cp/Cv) = 1.33

15.)   Rise in temperature of the body when it calls through height ‘h’

△T = g h

CJ

16.)   Joules Mechanical Equivalent of Heat

J = W(Work)

Q(Heat)     =  4.186   J/cal

W in Joules

Q in calories

17.)   The height from when a block of ice be dropped that it melts on completely reaching the ground.

h = JL

g

18.)   Equation of isothermal process

PV = constant

19.)   Equation of adiabatic process

(i) PVγ    =  constant

(ii) TPγ-1 = constant

(iii)  Tγ 
Pγ-1  = constant

20.)   Work done during Isothermal process

W = 2.303 RT log10 (V2/V1)

W = 2.303 RT log10 (P2/P1)

21.)   Work done during adiabatic process

W =R/  γ-1   [  (T1-T2)]

 

W = R     (P1V1-P2V2)     —-DIV sign under R

γ – 1

W = Cv (T1-T2)

22.)  Slope of a diabatic process graph is γ-    times more than slope of Isothermal   process.

23.)  First Law of Thermodynamics

dq = du + dw

24.)  Efficiency of Heat Engine

ɳ       = 1 – Q2  (Div Sign Under Q2)       Q1-heat extracted from

Q1                high temperature

source

ɳ   = 1 – T2   (DIV SIGN UNDER T2)               Q2-heat rejected

T1                         To low

Temperature

sink.

T1-source

Temperature

T2-sink

Temperature

 

Efficiency of Heat engine can never be 100%

25.) coefficient of performance of a Refrigerator

β =  T2         =        Q2     

( T1-T2)            (Q1-Q2)

26.) There are two dead centers per cycle for a st.engine.

Add a Comment

Your email address will not be published.